Identification and treatment of internal rotation in normal mode vibrational analysis

نویسندگان

  • Philippe Y. Ayala
  • Bernhard Schlegel
چکیده

A procedure that automatically identifies internal rotation modes and rotating groups during the normal mode vibrational analysis is outlined, and an improved approximation to the corrections for the thermodynamic functions is proposed. The identification and the characterization of the internal rotation modes require no user intervention and make extensive use of the information imbedded in the redundant internal coordinates. Rigid-rotor internal rotation modes are obtained by fixing stretching, bending, and out-of-plane bending motions and solving the vibrational problem for the constrained system. Normal vibrational modes corresponding to internal rotations are identified by comparing them with the constrained modes. The atomic composition of the rotating groups is determined automatically and the kinetic energy matrix for internal rotation is given by either the constrained Wilson-G matrix or the Kilpatrick and Pitzer protocol. The potential periodicity, the rotating tops’ symmetry numbers, and the well-multiplicity are obtained using simple rules. These parameters can be altered by user input. An improved analytical approximation to the partition function for a one-dimensional hindered internal rotation has been developed that reproduces the accurate values tabulated by Pitzer and Gwinn to 60.4% with a maximum error of 2.1%. This approximation is shown to behave better than previously available approximations over a wider range of regimes. The one-dimensional rotor treatment is generalized to give useful approximations to the multidimensional rotor thermodynamic functions that can be a good start for more thorough studies. © 1998 American Institute of Physics. @S0021-9606~98!02006-6#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure and Chemical Bond of FOX-7: The AIM Analysis and Vibrational Normal Modes

FOX-7 (1,1-diamino-2,2-dinitroethylene) recently is expected as a relatively new energetic material with high-performance and low sensitivity. The RHF and MP2 levels and DFT method with B3LYP functional with aug-cc-pVDZ basis set have been used for obtaining equilibrium geometry and Rho function (electron density distribution). By the aid of fundamental physical theorems implemented in the ...

متن کامل

The Correlation between Molecular Graph Properties and Vibrational Frequencies

It seems that the general applicability of the quantum theory of atoms in molecules (QTAIM) oncharacterizing the bonded interactions is still questionable even afier 30 years since its formulation. Fordemonstrating the generality of bonding schemes in QTA IM, ea( isomers were chosen as the modelsystems and the results from molecular charge density analysis and vibrational normal modes werecompa...

متن کامل

Molecular dynamics integration and molecular vibrational theory. I. New symplectic integrators.

New symplectic integrators have been developed by combining molecular dynamics integration with the standard theory of molecular vibrations to solve the Hamiltonian equations of motion. The presented integrators analytically resolve the internal high-frequency molecular vibrations by introducing a translating and rotating internal coordinate system of a molecule and calculating normal modes of ...

متن کامل

On the Physical Reasons for the Extension of Symmetry Groups in Molecular Spectroscopy

Several situations of general interest, in which the symmetry groups usually applied to spectroscopy problems need to be extended, are reviewed. It is emphasized that any symmetry group of geometrical operations to be used in Molecular Spectroscopy should be extended for completeness by considering the time reversal operator, as far as the Hamiltonian is invariant with respect to the inversion ...

متن کامل

Symmetry and Fourier analysis of the ab initio-determined torsional variation of structural and Hessian-related quantities for application to vibration–torsion–rotation interactions in CH3OH

The aim of the present paper is to investigate the use of quantum chemistry calculations to obtain the torsional dependence of various structural and vibrational-force-field-related quantities that could help in estimating the vibration–torsion–rotation interaction terms needed to treat perturbations observed in the spectra of methanol-like molecules. We begin by using the Gaussian suite of pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998